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TG7: AI/ML FOR DETECTORS 
▸ University Mentors: 
▸ Jianming Bian (UC Irvine) 
▸ Javier Duarte (UC San Diego) 
▸ Robin Erbacher (UC Davis) 
▸ Harvey B. Newman (Caltech) 
▸ Maria Spiropulu (Caltech) 
▸ Daniel Whiteson (UC Irvine) 

▸ Laboratory Mentors: 
▸ Michael Kagan (SLAC) 
▸ Maria Elena Monzani (SLAC) 
▸ Benjamin Nachman (LBNL) 
▸ Ariel Schwartzman (SLAC) 

▸ HEPCAT Slack channel #tg-07_ai-ml-detectors 
▸ Webpage: https://hepcat.ucsd.edu/topical-groups/tg7-ai-ml-for-detectors-2/
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▸ ML for instrumentation:  
▸ detector modeling for optimization and design 
▸ detector simulation 
▸ detector calibration 
▸ particle identification 
▸ low-level tracking 
▸ high-level detector combination 
▸ strategies for noise suppression 
▸ identification of under-performing detector  

elements 
▸ specialized instrumentation for ML: 
▸ ML on FPGAs/ASICs for  

trigger/on-detector

RESEARCH TOPICS 3

arXiv:2101.08578

arXiv:1712.10321

arXiv:2103.05579

https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2103.05579


▸ 2022: Ben Nachman 

▸ 2023: Javier Duarte 

▸ 2024: Ben Nachman, Julia Gonski
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Machine Learning
 and Instrumentation

Benjamin Nachman

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 
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Fast AI/ML in Hardware  
for Particle Physics Machine Learning

 and Instrumentation
Benjamin Nachman

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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https://drive.google.com/drive/folders/1O8nl1ytUeXkalFoJmCX2_P4FsABRyBRY
https://urldefense.com/v3/__https://drive.google.com/file/d/1LfDygGPWbbCwuaMMdrU-I3txCqBrPAi2/view?usp=drive_web__;!!Mih3wA!FBkF2iS9s2er2ZP_rzYRW8mEixKWXbeV5HUFGoucplukjFbvd_ni_X_WzyXKHFu18NZHiSRvFJZjoxWxlxVw7ubWbQ_bRH6L$
https://urldefense.com/v3/__https://www.dropbox.com/s/8mpe71hs68nxd9d/AIML4Instrumentation2024.pdf?dl=0__;!!Mih3wA!DojGCAu_BGZY5mUkuqN_APBMrL6F6HwPQwJjeR5dOSePdQouV2s8ywG4OMhzUGf8WVG-6iFfkaf5DJci2R3c4Bbvyw$
https://www.dropbox.com/s/a45uyq65oejduh0/HEPCAT_AI_ML_HEP_2023June26.pdf?dl=0


TG7 HEPCAT FELLOWS
▸ Anthony Vizcaíno Aportela  

▸ Spring 2022 Cohort, UC San Diego 

▸ Research project: hardware-accelerated machine learning for the 
long-lived particle trigger in CMS for HL-LHC 

▸ Dylan Smith 

▸ Spring 2022 Cohort, UC Irvine 

▸ Research project: machine learning to develop generalized 
calorimeter simulations to help study the performance of future 
detectors
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▸ TA: Dylan Smith 

▸ Train and validate a generative adversarial 
network (GAN) to mimic calorimeter 
showers as simulated by GEANT4 

▸ Simulate GEANT4 events 

▸ Vary absorber material, absorber 
thickness, incident particle type 

▸ Visualize and analyze generated events 

▸ Train CaloGAN 

▸ Validate generated CaloGAN samples

CALOGAN SIMULATION LAB MODULE 6



CALOGAN SIMULATION LAB MODULE 7



▸ TA: Anthony Aportela 

▸ Train and deploy an ML/trigger algorithm  
on a PYNQ-Z2 using python/C++/VHDL 

▸ Pruning 

▸ Quantization-aware training 

▸ Deployment 

▸ Based on hls4ml tutorial

AI/ML ON FPGA LAB MODULE 8

https://github.com/fastmachinelearning/hls4ml-tutorial


AI/ML ON FPGA LAB MODULE 9



SUMMARY
▸ Strengths: 

▸ Excellent AI/ML speakers at summer school 

▸ AI/ML lab modules and exercises created for reuse 

▸ Two fellows supported in total 

▸ Areas for improvement: 

▸ Connection between AI/ML and other TGs 

▸ Recruitment of AI/ML for detector fellows 

▸ Thanks to DOE Office of Science for support!
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