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The Large Hadron Collider (LHC)

e One of the best tools we have for scientific
discovery
e 27 km diameter circular collider located in

Swiss-French border near Geneva

e RF cavities accelerate bunches of particles

e Superconducting magnets bend the trajectories
and bring bunches to various collision points

e Proton-proton collisions began in 2010 at a
center of mass energy of 7 TeV

e Higgs boson discovered in 2012 by CMS,
ATLAS collaborations

e Collisions now happen at a center of mass
energy of 13.6 TeV, bunch crossing rate of
40MHz




The Large Hadron Collider (LHC)

e Scheduled upgrade in the next couple of
years with the aim of increasing the
instantaneous luminosity 5 to 10 times
nominal value

e Detector upgrades are needed in order to
handle the increased luminosity
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The Compact Muon Solenoid (CMS) Experiment

One of the general purpose detectors
at CERN

Joint discovery of the Higgs boson in
2012 along with ATLAS collaboration
Segmented construction with endcap
and barrel regions

Superconducting solenoid

O  3.8T Magnetic Field
Inner tracker
Electromagnetic calorimeter
Hadronic calorimeter
Return yoke
Muon chambers
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Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla
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The Compact Muon Solenoid Experiment(CMS)

e Subsystems designed to Key:
measure different types of
particle signatures

o Tracks N
o Energy deposits G'“' |
e Unrealistic to store each event
o ~1 petabyte per second

e Sophisticated algorithms select W)
events that may include
interesting or rare phenomena
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The CMS Trigger System

e Two level trigger system reduces data rate by selecting events of interest
o Hardware based level 1(L1) trigger receives coarse information from detector

subsystems & makes quick (few ps) decisions, reducing rate to ~100 kHz
o Software based high level trigger (HLT) performs more detailed analysis on data
passed by L1 trigger - further reducing rate to ~1 kHz
e Data from sub-detectors combined to single event record
e Data stored to disk at CERN’s Tier-0 computing center

e Collaborative effort - member institutions contribute to experimental operations
! i




Overview of the Global Muon Trigger(GMT)

e Composed of multiple hardware
processing boards
e Receives data from muon detector
systems and L1 track trigger
o  Drift Tubes (DT)
o Resistive Plate Chambers(RPC)
Cathode Strip Chambers(CSC)
o Gas Electron Multipliers (GEM)
e The L1 trigger takes track primitives
from the muon stations, tracker and
makes muon tracks for entire detector
e UCLA is responsible for the upgrade
to the Global Muon Trigger to be
delivered during LS3
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X20 Modular Platform and the Octopus Board
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e The processing boards are placed in advanced 4 O e —
telecommunications architecture (ATCA) chassis B i

e The Octopus FPGA module features the VU13P
FPGA

e The X20 platform features a large heatsink in
which the processing board is placed (center)

e The optical module (left) connects the optical
links from the detector to the transceivers which
then send signals to the board through twinax
cables

e The power module(right) generates the power
rails, also features a SOC that performs
management and control functions.

e Firmware on FPGA contains the trigger
algorithms




Kraken

e Upgrade of The Octopus FPGA module with
next generation 7nm AMD Versal FPGA

e Funding through the HEPCAT fellowship
allowed me to contribute to this design by

O  Helping in the schematic and layout
design of Kraken

O  Simulating the power supply behaviour
for the sensitive electronics and tuning
the output filtering capacitance for the
power supplies

O  Designing, building, and testing an
interface board for Kraken, for power

delivery, data transfer, systems
monitoring and management
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Project: Kraken schematic review
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Project: Kraken layout and review

e 18 layer stack up

e High Density Interconnect (HDI) techniques, including
use of microvias and buried vias

e Trace and via impedances tuned to differential pair
protocols

e Worked in parallel by building sub-modules

e Design completed and reviewed in-house

e First batch of board manufacturing completed and
tested with no FPGA — Works

e Board with FPGA expected mid Nov.
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Project: Power supply simulations

e Kraken will have a core voltage
of 0.8V and a current of 375A

e This power rail will be supplied
through system of buck
regulators stepping down 12V

e LTSPICE Simulations to tune
filtering capacitance and to verify
ripple voltage would be within
acceptable range
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LTSPICE simulation of 3 LTM4681s generating 0.8V core voltage at 375A
Load resistor of 2.222mQ used, for a simulated current of 360A

9.24mF output filtering capacitance used

Full simulation, voltage stable after 3ms

0.8V Simulated Output
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Simulated output voltage near
stable voltage output region

0.8V Simulated output voltage
Vp—p = 0.588mV
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time(ms)
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LTSPICE simulation of single LTM4638 generating 1.8V PSDDR voltage at 15A
Load resistor of 138mQ used, for a simulated current of 13A
410uF capacitance used. Switching Frequency of 0.998MHz

Simulated output voltage near

Full simulation, voltage stable after 11.5ms stable voltage output region

LTSPICE simulation of quad LTM4638s generating 1.2V voltage at 60A
Load resistor of 24mQ used, for a simulated current of 50A
1.64mF output filtering capacitance used. Switching frequency of 0.998MHz

Simulated output voltage near

Full simulation, voltage stable after 2.6ms stable voltage output region
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LTSPICE simulation of single LTM4638 generating 3.75V Intermediate voltage at 15A(max)
Load resistor of 269mQ used, for a simulated current of 13A
0.410mF output filtering capacitance used

Simulated output voltage near

Full simulation - 3.75V Intermediate stable voltage output region
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LTSPICE simulation of two LTM4638s generating 0.92V MGTVCC voltage at 30A
Load resistor of 34.1mQ used, for a simulated current of 27A
820uF output filtering capacitance used. Switching frequency of 600kHz
Simulated output voltage near
Full simulation, voltage stable after 5.2ms stable voltage output region
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Project: Interface Board

e This board will connect directly to kraken for
power delivery, data transfer, systems monitoring
and management

e 12V, 3.3V, 5VSB through 24pin ATX Header

O  Will also allow Kraken to function as a CPU

e Dedicated high power connector (NVIDIA
12VHPWR)

e Gigabit ethernet signaling through RJ-45
connector

e Hardware signal protocols: UART, 12C, JTAG,
each with dedicated headers

e Differential signaling through SMA connectors
(Clocks, Signals)

e Tuned impedance control, 8 layer design

e Connection to kraken through Samtec [N Fhryeics & Astronomy
Razorbeam connector

Bottom

L e e

Top
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Project: Interface Board

e Ordered 5 PCBs along with ATX power

supply
e Assembled at the UCLA electronics shop
e Tested connectivity, standby voltage ﬂ

e Connected to 12C 10 expander through
raspberry pi interface

O  Made simple power ON/ OFF and

signal readout commands through
this interface
e Also tested JTAG, UART

i L“T fi
S TR
R WO : -
VR R L oy
A ‘

i |
-

FEIENED

iences

| ‘ ¥
I 1-2301984-0
@ 1522-A001
e

' Ry \ (R
%1 Ny ! i,) L.
i i |

16



Next Steps

e Kraken PCB assembled
e All components placed on board except for
Versal FPGA
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