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What is CEVNS?

>

Coherent Elastic Neutrino Nucleus Scattering scattered
0 neutrino
(CEVNS) A
Neutral Current Interaction with a well-known e
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measurements of the angular spectrum

Why is this the case?
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Motivations for Instrumentation R&D

> CEVNS cross section is large but the only detector observable is a recoiling
nucleus from a low energy neutrino (~50 MeV)!

> Faint keV signatures with very small tracks (few hundred microns at most in
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LArCADe Instrumentation Project

> Liquid Argon Charge Amplification Devices (LArCADe) vel? :E
> |dea is to modify the anode with pixels of conducting tip @ * %% st e es
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arrays to produce highly localized electric field amplification
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LArCADe Pixel Fabrication

> Went to the Brookhaven National Lab Center for Functional Nanomaterials in
Spring 2024

> Used a dry etching technique to produce very small tip arrays

Photolithography

Mask Alignment Etching I

Silicon Wafer

> -35°C
-60°C
<-70°C

Silicon Wafer
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LArCADe Pixel Fabrication

5.0kV 9.4mm x50 SE(M) 4/22/2024 18:52

Electron Microscope images during the etching phase

We tested various temperatures to see different trends
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LArCADe Pixel Fabrication: Final Result
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> We developed a multi-stage etching recipe that produces tip structures from an array of
circular chrome mask sites

> We did not have time to produce a sample that meets the design specs, but we were able to
produce one conservative tip array (~40 um height)

> These tips are too small in height to produce amplification in LAr but should work in GAr

Alexander Antonakis, UCSB HEPCAT Annual Meeting



Tip Geometry Simulations

> After making our sample tip geometries at BNL, we wanted to investigate whether they would

have similar performance to previous geometries in simulation
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Hypothesis: the tip amplification near the apex should be driven by the tip slope near the apex

First, | made my own numerical solver for these tests:
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Tip Geometry Simulations

> To investigate the tip geometries further, I've been working with my undergraduate
mentee Vansh Agarwal to use more detailed simulation packages/numerical solvers

> We have been able to verify the static solution is driven by the slope at the tip apex

and we have begun multi-tip simulations . rajectories
Ci f L d Exponential Spike Slopes vs Max |E
Electric Field Magnitude (cell-centered) e 2 P = 35
0.6 70 gy s ®i B 2
04 3
65 m a4
40 e
E25
60 L £
s
ul 5
- 55 Y § 2
_ ° = 1.5 5 lonizatio
I >
— x50 4 lonizations
w ©
2 1 3 lonizations
20 45 e 2 lonizations |
0.5 1 lonizations
40 4 0 lonizations
o 0
L 10 -1 -0.75 -0.5 -0.25 0
35 z Position [mm]
@ Linear slope (b/h) . .
A Exponential tip slope TRANSLATE Simulation of electron
0 01 e m Exponential secant slope (0.4-0.5)

3 p p 3 P 5 - transport: arXiv:2211.12645

Effective slope

Alexander Antonakis, UCSB HEPCAT Annual Meeting 10


https://arxiv.org/abs/2211.12645

Testing at Fermilab

> We tested the LArCADe pixel in the Blanche cryostat at Fermilab using a custom purity
monitor (PrM)

> APrMis a single pixel TPC detector — controls input signal with the photoelectric effect

Rings
Optical Fibers

Photocathode
Cathode disk

rCADe PrM[ S
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Testing at Fermilab: Purity Monitors
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>

We took data with PrMs in both Liquid Argon
(LAr) and gas (GAr)

As expected, no amplification was observed
in LAr

We do observe amplification in GAr where
no amplification is expected from the bulk
field

We compared with the Ixcat database

Townsend coefficients to extrapolate when
amplification would turn on for the bulk field
(shown in green)
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LArCADe Testing Results
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Alternative Fabrication Methods: KOH Etching

> At UCSB we are collaborating with our campus Nanofab to explore alternative

fabrication techniques and improve upon our past results

> A promising method is known as KOH etching

EHT =20.00 kV
WD= 25mm

Signal A = SE1
Photo No. = 7367

250um wide trench, etched to 89.3um, <100> orientation
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Nuclear Recoil Imag

Argon Recoil Spectrum
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> We are working on simulation tools to study the detector
requirements necessary to resolve nuclear recoils

> Measurement of the recoil angle allows one to reconstruct the
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“Coherent elastic neutrino-nucleus scattering with directional detectors”
PRD 102 (2020) 1, 015009
M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari
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Other Hardware

at UCSB

We are also working on hardware testing for the future DUNE experiment

Recently we started tuning the voltage regulation needed for the X-Arapuca SiPMs

These modules will be mounted directly on the high voltage cathode plane — powered

and readout using signals sent via optical fibers (Power-Over-Fiber (PoF) technology)

system
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Conclusions & Future Work

> We successfully produced a LArCADe tip array at Brookhaven National Lab

> The LArCADe pixel geometry produced is conservative and only expected to provide amplification in
argon gas

> We tested this pixel at Fermilab and observed amplification in gas at sufficient field strengths

> QOur new simulations show that our fabricated (curved) tip geometries should provide the same field

amplification as the comsol cone-like geometries for the same tip slope
> We are working with colleagues in the UCSB nanofab to explore alternative fabrication methods and
to produce a sample that is expected to provide amplification in liquid argon

> Continue testing DUNE cold electronics for the X-Arapuca photon detection system
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Nuclear Recoil Imaging Challenges

keV-scale imaging in argon-based detectors

Recoil Spectrum [30 MeV v] @ 500 V/cm
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Nuclear Recolls in Argon
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Other UCSB Hardware: DUNE X-Arapucas

In warm
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Other UCSB Hardware: DUNE X-Arapucas
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Other UCSB Hardware: Cryostat Test Stand
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CEVNS Theory
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Figure 1: (Left) The Coherent Elastic Neutrino Nucleus Scattering (CEvNS) process. The only detector observable
is the recoiling nucleus. (Middle) CEvNS Cross-section as a function of the incident neutrino energy for various target
materials. CEvNS is orders of magnitude larger than other neutrino cross sections in this energy regime. (Right) Electron
scattering cross sections in argon. Amplification in liquid is difficult due to the growing momentum transfer cross section
after the Ramsauer dip and the high density of the liquid environment.
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Front End Electronics
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LArCADe Testing Results: Run 1

Run in Gas
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LArCADe Testing Results: Run 2
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Pulse Broadening

>> Pulse broadening is observed at large field strengths with the LArCADe PrM

>> May be due to an additional delayed signal from ions traveling away from the pixel
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Signal Processing
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